Contents **Domestic Fuel Cell market trend in Korea** Domestic Fuel Cell development trend in Korea Strategy roadmap and research plan for Fuel Cell development in KOGAS O Fuel Cell development trend in KOGAS Conclusion ### Government policies related with new & renewable energy in Korea | New Renewable | | |--------------------|--| | Energy Feed-in T | Oct. 2006 | | ariff (FIT*) | · The cost difference support is decreasing the amount 3% every year com | | | pared to the previous year for 15 years, since 2008 | | | Scheduled to be replaced with the RPS system in 2012 | | Renewable P | · 10% of total power generation is planned to be supplied as new & renewa | | ortfolio Standards | ble energy from 2012 to 2020 | | (RPS**) | · The government selects some mandatory subjects (500 MW and above), | | | and the mandatory subject must complete the goal in a specified time. The | | | goal is to be progressively increased from 2% in 2012 to 10% in 2020. | | | · Mandatory subject can operate the obligations by investing in the new ren | | | ewable energy field directly or by trading the REC (Renewable Energy Certi | | | ficate). | | 1 Million Green H | · Until 2020, new & renewable energy equipment installation cost will be par | | ome Supply Busi | tially supported and a million green homes are planning to be supplied | | ness | · In the case of fuel cells, 80% of the current installation cost is supported b | | | y the government | | | | ^{*}Feed-in Tariff: The system where electricity produced with new renewable energy has a price set by the government and the power providers are obligated to purchase this energy. ^{**} Renewable Portfolio Standard: A system that obligates a specified size or larger power provider to make their total produced energy provided with new renewable energy for a specified ratio and above. Detailed enforcement decree is currently under review. ## Government policies related with new & renewable energy in Korea | Obligation of
New
Renewable
Energy use
for Public
Buildings | After 2011, all public buildings over Gross Floor Area of 3,000m² built by a public institution must cover 10% or above of the total energy usage with new & renewable energy. (previously it was 5% based on the construction cost) The obligation ratio is increased from 10% in 2011 to 20% in 2020 and the gross floor area of subject building was adjusted to 1000m² or above in 2012 | |--|---| | 5 kW-class Building Fuel Cell Demonstratio n Business | For two years from Dec. 2009 to Nov. 2011, the 5kW-class fuel cell demonstration project for building was proceeded as a new & renewable energy development business 5 kW fuel cell system for building were installed and operated as demonstration in the different site for daytime and for nighttime energy consumption Established commercialization technology basis through acquiring durability and reliability during this project | ### Domestic Fuel Cell market trend in Korea - Fuel cell is suitable to cope with RPS(Renewable Portfolio Standard) - O Government decided to introduce 660MW of fuel cell power plant until 2024 as national electric power supply plan, and Seoul city decided to install fuel cell systems on 700MW(47.6% of total new & renewable energy of Seoul) scale as distributed generation - Government is under consideration for fuel cell system to be able to substitute for emergency generator(75MW/yr.) - In the domestic power market, fuel cell applicable potential households are 16.4 million, and it is expected to be expanded to 2 million houses and above by 2020 # Domestic Fuel Cell development trend in Korea - O POSCO power built stack factory at 2011, is expected to manufacture the stack in the 10MW to 100MW class - KEPRI(Korea Electric Power Research Institute) undertook the 250kW-class cogeneration MCFC system development research and MCFC stack mass production research - Doosan Heavy Industries have produced and operated 25 kW-class internal reforming MCFC stack in 2006 and are currently developing the 300 kW-class interior reforming MCFC system - O KOGAS installed and operated 210 fuel cell systems for demonstration research with various fuel cell production companies since 2006 as 'residential fuel cell monitoring business' for 5 years until 2011 ### Strategy roadmap for Fuel Cell development in KOGAS Project Hydrogen Production and Utilization under 50Nm³ **Final Target** - Development of 50Nm³ Reformer and Hydrogen Utilization - Commercialization of Steam reformer (PEMFC, SOFC) - Commercialization of SMR, WGS Catalyst and Desulfurizer - → Heat Efficiency 75% (Reformer), Durability 40,000hrs Catalyst Period - 1st Stage ('11.9~'14.12, 40 months): 10Nm3 Hydrogen Production - 2nd Stage ('15.1~'17.12, 3years): 30Nm³ Hydrogen Production - 3rd Stage ('18.1~'20.12, 3years) : 50Nm³ Hydrogen Production Particular Object - 1st Stage: Heat Eff. 75%, Sulfur conc. < 50ppb, Durability 5,000hr - 2nd Stage: Heat Eff. 77%, Sulfur conc. <10ppb, Durability 10,000hr - 3rd Stage: Commercialization of 50Nm³ Reformer ### Research Plan for Fuel cell in KOGAS ### **Desulfurization** #### Types of Ordorant(sulfur compound) Tertiary-buthylmercaptan(TBM) ### Concentration of Sulfur Compound - Total Concentration: 3.8ppm - THT : TBM = 70% : 30% O Role of Desulfurizer - Natural gas used as City gas in Korea contains organic sulfur compound (3-4ppm) such as tertiary-butyl mercaptan(TBM) and tetra hydro thiophene(THT) as odorants to make it easy to detect leakage of the gas. - However, sulfur compounds easily poisoned steam reforming catalysts containing Ni. Therefore, sulfur components have to decrease to ppb level in fuel cell system. ## **Desulfurization** **Evaluation of desulfurization O Evaluation of desulfurization** material for Power plant MCFC (Posco Power) # material for Residential fuel cell **Desulfurization for Molten Carbonate fuel Cell** # **Basic experiment for simulation of PEM reformer** # 2000 8 1915 9 1915 9 1916 9 19 ### → Chemical modeling in SR region Steam Reforming $$CH_4 + H_2O \rightarrow CO + 3H_2$$ $\Delta H = -206.1 \frac{kJ}{mol}$ $$r_1 = \frac{k_1}{p_{H_2}^{2.5}} \left(p_{CH_4} p_{H_2O} - \frac{p_{H_2}^3 p_{CO}}{K_1} \right) / (DEN)^2$$ Water Gas Shift $$CO + H_2O \rightarrow CO_2 + H_2$$ $\Delta H = +41.15 \text{ kJ/mol}$ $$r_2 = \frac{k_2}{p_{H_2}} \left(p_{CO} p_{H_2O} - \frac{p_{H_2} p_{CO2}}{K_2} \right) / (DEN)^2$$ **▶** Direct Steam Reforming $$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2$$ $\Delta H = -165 \text{ kJ/mol}$ $$r_3 = \frac{k_3}{p_{H_2}^{3.5}} \left(p_{CH_4} p_{H_2O}^2 - \frac{p_{H_2}^4 p_{CO_2}}{K_3} \right) / (DEN)^2$$ ## **Results of simulation** Distance # Reformer for 1kW PEMFC System # Reformer for 5kW HT-PEMFC developed by KOGAS **Developed compact reformer for 5kW HT-PEMFC** ## Results of performance test for 5kW-class reformer | name | input data | Volumetric flow | |-------------------|---------------|-----------------| | | [-] | [l/min] | | nat. gas reformer | (Natural gas) | 20.000 | | nat. gas burner | (AOG) | 45.44 | | A/F-burner | 1.1 | | | S/C-Reformer | 3.000 | | | name | symbol | fraction x _i
(dry) | |-----------------|------------------|----------------------------------| | | [-] | [mol %] | | methane | CH₄ | 0.64 | | hydrogen | H_2 | 79.1 | | carbon monoxide | СО | 0.25 | | carbon dioxide | CO ₂ | 20.01 | | nitrogen | N_2 | 0.00 | | water | H ₂ O | 0 | | name | Efficiency(LHV) | |----------------|-----------------| | standard | 77.66 | | (behind shift) | 77.00 | ## Reformer for 10kW for PEMFC ## Application of developed 10kW-reformer to fuel cell system # Conclusion - The demand for new renewable energy is becoming stronger and in the current situation the government also is forcing the process by creating legislations. - The domestic fuel cell market is currently being largely expanded and technology development is actively in progress. - In accordance to this, KOGAS has developed many sizes of reformers (1~10kW-class) and displayed the highest level of performance. - Furthermore, KOGAS has specific strategy for Fuel Cell development and plan to develop under 50kW-class reformers according to this strategy. - Through development and commercialization of reliable reformers, KOGAS will lead in the supply of fuel cell systems in Korea. # **Application to Gas Supply station** Heating 1.22ton/hr of natural gas with heat generated from 10kW fuel cell Gas heater - Reduce the pressure of gas in pipe line in order to supply desired gas pressure to city gas companies or power plants at the gas supply station. - •use gas heater usually to prevent pipe line, gauges and metering facilities from low temperature gas flow caused by pressure drop - •5 or 10kW fuel cell system can be used as auxiliary heat supplier to heat natural gas during reducing gas pressure # **Prototype burners for 5kW HT-PEMFC** Surface combustion (Round flat) Figure temperature profile of flame according to fuel